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People’s Republic of China
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Abstract. The Bergman spectrum of a two-dimensional composite with parallel cylinders
immersed in the matrix was calculated and analysed. We found that the spectrum is discrete
away from the percolation threshold and tends towards being continuous as the cylinders become
closer and finally touch. We also calculated the effective dielectric constant and found that close
to the percolation threshold the effective dielectric constant is scaled with an exponent that is half
of the distance between nearest cylinder surfaces, and this was explained by a simple physical
argument.

The Bergman spectrum is very important in studies of effective properties of composites;
it reflects all of the microstructure properties of the composite considered. As proved by
Bergman, the effective dielectric constant of a two-component composite can be written as a
pole expansion of the following form:

ε/ε2 = 1− F(s) (1)

wheres = ε2/(ε2− ε1) is a material parameter. The spectrum functionF(s) can be expressed
as

F(s) =
∑
α

Fα

s − sα (2)

where the pair(sn, Fn)are the poles and the weights of the spectrum functionF(s) respectively;
it is called Bergman’s spectrum and is solely determined by the microstructure of the
composite [1]. Bergman’s spectrum is not necessarily discrete; it can also be continuous.
In the latter case the summation in formula (2) is replaced by an integral and the spectrum is
given by the density of states. There are some general properties of the spectrum; for example,
the sum of the weightsFα gives the volume fraction of medium 1, and for cubic-symmetry
systems in 3D and square or hexagonal symmetry in 2D, the following sum rule holds:∑

α

sαFα = p(1− p)
d

(3)

whered is the dimensionality of the system. Other forms of spectrum functions can be defined
when we change the rules for medium 1 and medium 2 as well asε1 and ε2 [1]. Using
the spectrum function, one can derive in a very general manner many useful results for the
composite, including the bounds of the effective dielectric constant [2], the microstructure
enhancement of the nonlinear optical coefficients [3] and the yield stress of electrorheological
fluids [7]. If the effective dielectric constant as a function ofε1 andε2 for a composite is known,
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then one can extract from it the corresponding Bergman spectrum, and use the spectrum in
the calculation of other properties of interest. Recently, Maet al used the spectrum extracted
from different approximation formulae for the effective dielectric constant in a study of the
enhancement of the third-order nonlinear optical coefficient, and fairly good results were
obtained [3].

The calculation of Bergman’s spectrum is difficult in general cases; in some special cases,
it can be calculated from Bergman’s formulation by a matrix diagonalization.

In an early publication [4], Bergman calculated the pole spectrum of a simple cubic array
of spheres and discussed the behaviour of the spectrum of contacting spheres on the basis of his
calculations. McPhedran and McKenzie, in an invited paper published inApplied Physics[5],
calculated the pole spectra of square and hexagonal arrays of cylinders by means of a different
formulation; they also derived from their calculations some general features of the spectrum.

In the following, we will use Bergman’s formulation [6] to calculate the Bergman spectrum
of a two-dimensional composite, which consists of spherical cylinders arranged in square
lattices. We found that the spectrum gets denser as the cylinders are condensed, and that
the spectrum may become continuous in the limit where nearest cylinders contact. We also
found that the effective dielectric constant withs = 0 is scaled according to the separation
between nearest cylinder surfaces with an exponent close to half of that separation, which can
be explained by a simple physical argument.

Now we explain our calculation and analysis in detail. Consider a two-component
composite with cylinders of dielectric constantsε1 immersed, parallel, in a medium of dielectric
constantε2, with the whole system placed in an infinite parallel-plate capacitor. They-axis
is chosen to be perpendicular to the electrodes. The electrostatic potentialφ is given by the
solution of the following boundary value problem:

∇ · (ε∇φ) = 0

φ

(
x, y = −L

2

)
= L

2
E0

φ

(
x, y = L

2

)
= −L

2
E0

(4)

where

ε = ε2

(
1− 1

s
η(r)

)
(5)

and

s = ε2

ε2 − ε1
(6)

is the only material parameter of the system andη(r) is the indicator function defined to be
1 in medium 1 and 0 otherwise. With the help of the Green FunctionG(r, r′) of Laplace’s
operator, equation (4) can be transformed into an integral equation:

φ = z +
1

s
0̂φ. (7)

where the applied field was taken to be−1 and the operator̂0 defined as

0̂φ =
∫

dr′ η(r′)∇′G(r, r′) · ∇′φ(r′) (8)

which is a Hermitian operator with the following definition of the inner product:

〈φ,ψ〉 =
∫

dr η(r)∇φ∗ · ∇ψ. (9)
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The Green function in the limit where the system tends to infinity is

G(r, r′) = 1

2π

1

|r − r′| . (10)

The effective dielectric constant can be expressed as

ε̄ = 1

S

∫
dS ε2

(
1− 1

s
θ(r)

)
∂φ

∂z
= ε2

(
1− Fn

s − sn

)
(11)

whereS is the area of the cross section of the sample,sn is thenth eigenvalue of the operator
0̂ andFn is related to thenth eigenfunctionφn of the operator̂0 by Fn = |〈φn|y〉|2. This is
the Bergman representation of the effective dielectric constant.

Following Bergman [1], we use a scheme for expanding the potential in medium 1 in
eigenfunctions of̂0 for single domains. The single-domain eigenfunction is given by

φRn =


1√
nπ

|r − R|n
an

cosnθr−R |r − R| < a

1√
nπ

an

|r − R|n cosnθr−R |r − R| > a

(12)

with the eigenvaluesn = 1/2. The final result for a square lattice can be obtained by
diagonalization of the following symmetric matrix:

0n,n′(k = 0) =
∑
R

00n,Rn′ = sn′
∑
R

∫
dr η+

R∇φRn(r − R) · ∇φR′n′(r − R)

= (−1)n
′
sn′
√
nn′

(n + n′ − 1)!

n!n′!

∑
R

cos(n + n′)θR
an+n′

|R|n+n′ +
1

2
δn,n′ . (13)

The eigenvalue of the above matrix is thesn that we needed andFn is given byFn = a2π |Un,1|2,
whereUn,m,m = 1, 2, 3, . . ., is thenth eigenvector of the matrixΓ.

Whenn + n′ is equal to its smallest possible value 2, the sum overR in equation (13)
is only conditionally convergent; this sum can be evaluated by the Lorentz effective-medium
method [8]. For a square lattice the result is∑

R 6=0

cos 2θR
R2

= π

s
(14)

wheres is the area of the unit cell. Whenn + n′ is greater than 2, the sum is absolutely
convergent and can be evaluated by the brute force method; however, we have used the Ewald
summation method [9] to accelerate the convergence whenn + n′ is small.

For an array of spherical cylinders arranged in a square lattice, we calculated and analysed
the Bergman spectrum. The centre-to-centre distance between nearest cylinders in our study
is 2a(1 + δ), wherea is the radius of the cylinders andδ is a positive number. The spectrum
consists of discrete eigenvaluessn and corresponding weightsFn, which for a typical case were
as plotted in figure 1. In order to get converged results, we increased the order of theΓ matrix
for every fixed value ofδ until the calculatedsn with nonzero weightFn converged. Further
increase in the order of theΓ matrix will result in extra eigenvalues at position 1/2 with zero
weight, i.e. the accumulation of poles at 1/2.

The accumulation of poles at 1/2 was also observed and discussed by Bergman in the
calculation of the pole spectrum of arrays of spheres [4, 6]; the phenomenon is even more
prominent here and can be understand by examining formula (12). We see that whenn→∞,
φRn(r)→ 0 unlessr is near the cylinder boundary, since the nearest cylinder surfaces are at
least 2aδ apart. The sum in (13) tends to zero whenn is large, so0nn′ = (1/2)δn,n′ whenn is
large enough.
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Figure 1. The Bergman spectrumsn and Fn for different cylinder separations.δ = 10−2

(diamonds), 10−3 (circles), 10−4 (triangles).

The maximum order of theΓ matrix required to get converged results is sensitively
dependent on the value ofδ. For δ ∼ 10−2, the maximum order ofΓ is about 700, while
for δ ∼ 10−4, the maximum order of theΓ matrix can be as large as 2200. Further decrease of
δ will cause theΓ matrix to become ill conditioned, and accurate results will be hard to obtain.

As shown in figure 1, the total number of poles with nonzero weight is increased when
δ is decreased. We suspect that the spectrum will become continuous when the percolation
threshold is reached; i.e.,δ → 0 when the cylinders contact. There is a sharp corner of
medium 2 at the contact point. The electric field is divergent at the corner, and the result
is a continuous spectrum. The situation for the contacting cylinders can be compared to the
two-dimensional checkerboard microgeometry, for which the effective dielectric constant is
known exactly [10] and the corresponding spectrum is continuous. The lowest pole,s1, has
the largest weight for the square lattice that we studied here. The position of this pole tends
to 0 whenδ tends to 0; also, the weight of this pole decreases withδ. From (11) we see that

−4.00 −3.50 −3.00 −2.50 −2.00
log10δ

−3.00

−2.50

−2.00

−1.50
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g 10

s 1

Figure 2. A log–log plot of the lowest eigenvalues1 as a function ofδ. Points are from the
calculation and the line is a straight-line fit.
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Figure 3. A log–log plot of the weightF1 corresponding to the lowest eigenvalues1 as a function
of δ. Points are from the calculation and the line is a straight-line fit.
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Figure 4. A log–log plot of the effective dielectric constant as a function ofδ. Points are from the
calculation and the line is a straight-line fit.

whens = 0, corresponding toε1 →∞, the effective dielectric constant is dominated by the
lowest poles1 and its weightF1, i.e. ε/ε2 ≈ −F1/s1. We systematically investigateds1 and
F1 as functions ofδ. For small enoughδ, s1 andF1 scale as power laws withδ, as figure 2
and figure 3 indicate. The asymptotic behaviour of the pole position and its weight were fitted
from calculated data, ass1 ≈ 0.54δ0.63 andF1 ≈ 0.88δ0.10. From these results, we estimate
that the effective dielectric constant ats = 0 will be ε1/ε2 ≈ 1.6δ−0.53. On the other hand,
calculation of the effective dielectric constant ats = 0 using all of the poles gives a similar
result. Figure 4 is a log–log plot of the effective dielectric constant ats = 0 as a function
of δ. From the plot we getε = 1.9δ−0.52. The exponents in the two cases are very close to
1/2, which can be understood on the basis of the following argument. The capacitance of two
infinitely long metal cylinders with radiusa is given by [11]

1

C
= 2 cosh−1

[
c2 − 2a2

2a2

]
(15)
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wherec is the distance between the two cylinder centres. The smallest distance between the
two cylinder surfacesh = c − 2a, while δ as defined above is given byδ = h/2a. Whenh is
small, we get

1

C
= 2 cosh−1

[
(2a + h)2 − 2a2

2a2

]
= 4

√
2h

a
+ O(h/a) = 8δ1/2 + O(δ) (16)

which explains why the exponent of the effective dielectric constant ats = 0 is close to 1/2.

We thank the referee for pointing out reference [6]. This work was supported by the China
National Natural Science Foundation and The Climbing Project.
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